

Correct-by-Construction Design of Industrial Communication

SECPPS Workshop SE Conference

Dr.-Ing. Friederike Bruns, 25.02.2025

Industrial Distributed Control Systems (IDCS)

Correct-by-Construction Design of Industrial Communication Dr.-Ing. Friederike Bruns

Why Time Delay Matters in IDCS

Time in IDCS and Network Communication

F. Bruns, J. Walter and W. Nebel, "A Detailed Analysis of Timing Effects in an IEC 61499 Ethernet/TSN Communication Scenario", In 27th IEEE IES International Conference on Emerging Technologies and Factory Automation (ETFA), Stuttgart, Germany, 2022, IEEE, doi: 10.1109/ETFA52439.2022.9921436. Carl von Ossietzky Universität Oldenburg

General Modelling Procedure for Industrial Control Systems

Correct-by-Construction Design of Industrial Communication Dr.-Ing. Friederike Bruns

Contract-Based Design

- Continuous refinement to avoid costly design reiterations
- Hierarchical decomposition
- Virtual Integration Test: $C \ge C_1 \otimes ... \otimes C_n$
- Outcome
 - Failed: Adjust the model(s) or contract(s)
 - Passed: Further refinement or deployment

Formalisation of IEC 61499 Semantics

Formal verification requires formalisation of IEC 61499 semantics

An application A is characterised by the tuple (FBs, E, D, M, ExB). Within this characterisation:

- FBs refer to a set of periodic and modular *function blocks*
- E specifies a set of *events* that trigger the execution of FBs
- D defines a set of data connectors
- M defines a *mapping of FBs* to execution resources
- ExB refers to the behaviour of the application based on the execution and data processing with FBs

Semantic Loopholes

- IEC 61499 allows different interpretations of an application
- Varied behaviour depending on the runtime and limited support for real-time (Smodic'06, Prenzel'22) Assumption

Consider a static and deterministic FB network

Introduce Rendezvous FBs if needed to merge two event streams into one.

Carl von Ossietzky Universität Oldenburg

Formalisation of IEC 61499 Semantics: Timing

Formal Definition of FBs (Dubinin'08)

Restrict FBs to provide deterministic behaviour:

- Guarantee a bounded execution time
- Mitigate the risk of unbounded execution resulting from infinite loops

The timing behaviour of a periodic FB is characterised by the tuple (ρ , o, ϵ , δ). Within this characterisation:

- ρ is defined as the $\ensuremath{\textit{period}}$ of an FB
- o characterises the offset relative to the starting point of $\boldsymbol{\rho}$
- ε refers to the upper bound of the execution time for the FB
- δ specifies the *relative deadline* of an FB

Communication Layers

IEC 61499 Modelling Extension: The Message

Its interface is determined by the tuple (EI, EO, DI, DO, IW, OW) :

- with exactly one scalar event at the input and output (*EI* and *EO*). These refer to the incoming transmission request event and transmission confirm event.
- A message has a set of data inputs (DI = di1, di2, ..., dij) and an according number of data outputs (DO = do1, do2, ..., doj).
- The event ensures that the transmission is synchronised, so that the event and data transmission only takes place simultaneously.
- As a mathematical notation, this is described as *WITH*-(event data) associations.
- For a set of inputs this is described as $IW \subseteq EI \times DI$, and for outputs the notation is $OW \subseteq EO \times DO$.

Remark The scalar event input *EI* triggers the transmission of the data input set *DI*.

IEC 61499 Modelling Extension: The Message

Sender

Application Layer

Receiver

Application Layer

Motor1

INITO

CNF

Q0)

RD_1

Process to

Process

Device to

IEC 61499 Modelling Extension: The Message

Correct-by-Construction Design of Industrial Communication Dr.-Ing. Friederike Bruns

Slide 12 25.02.2025

Carl von Ossietzky

IEC 61499 Modelling Extension: The Message

Characteristics

- Message FB creates a message (packet with event and data) for transmission when triggered
- Synchronisation point for event and data stream (intentionally just one event I/O)
- Message FBs can be equipped with contracts
- Allows explicit mapping to communication resources

IEC 61499 Modelling Extension: The Channel

- Physical **Channel** within which a **Message** can be transmitted
- Communication pattern (TDMA-based) dictates technical parameters:

>Overall cycle time, number of **Channels**, each **Channel's** duration and order

Stored as part of the network segment specification

- Buffer-Channel:
 - 1. Synchronisation of network & execution cycle
 - 2. Safety margin for concurrent traffic outside of the application

Correct-by-Construction Design of Industrial Communication Dr.-Ing. Friederike Bruns

IEC 61499 Modelling Extension: The Channel

Communication	Details
communication	Details

Cycle Time: TIME# 10

÷
\sim
×

name	value	type	comment
Channel0	TIME#1ms	TIME	
Channel1	TIME#1ms	TIME	
Channel2	TIME#1ms	TIME	
Channel3	TIME#1ms	TIME	
Channel4	TIME#1ms	TIME	
Channel5	TIME#5ms	TIME	

Slide 16

25.02.2025

IEC 61499 Modelling Extension: Mapping

F. Bruns, B. Wiesmayr and A. Zoitl, "Supporting Model-Based Network Specification for Time-Critical Distributed Control Systems in IEC 61499", In 19th IEEE International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 2023, IEEE, doi: 10.1109/CASE56687.2023.10260604

Mapping Process

- Mapping specifies order and timing of **Messages** (time-triggered sending)
- Direct and manual schedule specification
- Could support automated scheduling strategies

Focus:

- Find a feasible schedule that does not violate timing requirements!
- Consider and analyse entire set of FBs to determine required order
- Resulting set of ordered Messages inherit exact timing information from the mapping

Use Case Example

Carl von Ossietzky Universität Oldenburg

Slide 19

25.02.2025

Joint Control Application with Timing Specification

- A-G contracts can be specified for a single FB or group of FBs (Subapp)
- Specification based on MTSL

Dr.-Ing. Friederike Bruns

F. Bruns, S. Mehlhop, B. Wiesmayr and A. Zoitl, "Enabling Automated Timing Verification: A Unified Approach for Industrial Distributed Control Systems", In 25*th IEEE International Conference on Industrial Technology (ICIT)*, Bristol, UK, 2024, IEEE

Joint Control Application – Refinement Step

{E1,E2} refers to simultaneously occurring events[E1,E2] refers to events that occur in unspecified order

Correct-by-Construction Design of Industrial Communication

Dr.-Ing. Friederike Bruns

Slide 20 25.02.2025

Joint Control Application

Dr.-Ing. Friederike Bruns

Slide 21 25.02.2025

A Possible Time Trace

Correct-by-Construction Design of Industrial Communication

Dr.-Ing. Friederike Bruns

Slide 22 25.02.2025 ^{Carl von Ossietzky} Universität Oldenburg

Joint Control Application Extended

Slide 23 25.02.2025 ^{Carl von Ossietzky} Universität Oldenburg

Joint Control Application Extended

Slide 24 25.02.2025 Carl von Ossietzky Universität Oldenburg

A Possible Time Trace with Multiple Contract Violations

Correct-by-Construction Design of Industrial Communication Dr.-Ing. Friederike Bruns

Joint Control Application Extended

Carl von Ossietzky

Universität Oldenburg

A Possible Time Trace

Correct-by-Construction Design of Industrial Communication

Dr.-Ing. Friederike Bruns

Slide 28 25.02.2025 _{Carl von Ossietzky} Universität Oldenburg

Automated Network Configuration

- Deployment using a wrapper script
- Automated execution of all configuration steps based on the provided information

Results:

- Varying number of higher & lower performant platforms
- No adjustments for Linux-based platforms
- Significantly streamlined process

Correct-by-Construction Design of Industrial Communication Dr.-Ing. Friederike Bruns

B. J. Mackenzie, F. Bruns and W. Nebel, "Model-Based Automation of TSN Configuration for Industrial Distributed Systems", In *21st IEEE International Conference on Industrial Informatics* (INDIN), Lemgo, Germany, 2023, IEEE, doi: 10.1109/INDIN51400.2023.10218085

Contributions & Future Work

Main Contributions

- IEC 61499 extension for modelling network communication: Message, Channel, Mapping
- Enabled timing verification for IDCS
- Automated Network Configuration

The extension is about to be standardised

Future Work

- Generating optimised schedules
- Use contracts as a basis for fault detection (offline and at run-time)
- Optimisation techniques for control systems (e.g., from an energy point of view)
- Model-based robust control and reduction of sensitivity against disturbances and faults
- Integration of uncertainty quantification

Correct-by-Construction Design of Industrial Communication Dr.-Ing. Friederike Bruns

Dr.-Ing. Friederike Bruns

^{Carl von Ossietzky} Universität Oldenburg

Integration of Timing Specifications in IEC 61499

1 <subapp comment="</th></tr><tr><td colspan=4>2 A: IN occurs every [10, 10]ms;</td></tr><tr><td>3</td><td colspan=5>3 G: Reaction(IN,OUT) within [10, 10]ms" name="_CONTRACT_ValveCtrlApp"></subapp>				
4	<subappinterfacelist></subappinterfacelist>			
5	<subappeventinputs></subappeventinputs>			
6	<subappevent comment="" name="REQ" type="Event"></subappevent>			
7				
8				
9	<subappeventoutputs></subappeventoutputs>			
10	<subappevent comment="" name="CNF" type="Event"></subappevent>			
11				
12				
13	VarDeclarations			
14	<subappnetwork></subappnetwork>			
15				
16				
17				

Correct-by-Construction Design of Industrial Communication

Dr.-Ing. Friederike Bruns

Slide 29 25.02.2025

IEC 61499 Modelling Extension

- DefaultConfiguration
 - Single communication
 - Specifically tailored for best-effort traffic
- TsnConfiguration
 - Concrete implementation of the concept
 - Parameters: cycleTime, a list of up to 8
 Channels each with its specified duration
 - Limitation of 8 Channels could be easily adapted, when there are respective changes to the TSN standard

Slide 30 25.02.2025 ^{Carl von Ossietzky} Universität Oldenburg

Mapping Process

Basis for systematic mapping

- Overview of all messages mapped to channels
- Enables automation processes

Correct-by-Construction Design of Industrial Communication

Dr.-Ing. Friederike Bruns

Slide 31 25.02.2025

XML Specifications

CHANNEL

1 <SegmentType Name="EthernetTSN" Comment="">

- 2 <Identification .../>
- <CompilerInfo/>
- <VarDeclaration Name="CycleTime" Type="TIME"
 - InitialValue="T#10ms" Comment="Cycle Time"/>
- <VarDeclaration Name="ChannelP0" Type="TIME"
 - InitialValue="" Comment=""/>
- <VarDeclaration Name="ChannelP1" Type="TIME"</pre>
 - InitialValue="" Comment=""/>
- 11

10

- 12 </ar>
- 13 InitialValue="" Comment=""/>
- 14 </SegmentType>

MESSAGE

- 1 <Application Name="App" Comment="">
 - <FB Name="MsgWith1DataPin" Type="MESSAGE_1" Comment="" .../>
 - <FB Name="MsgWith2DataPins" Type="MESSAGE_2"
 - Comment="" .../>
 - <!-- connections -->
- 8 </Application>

Mapping

1 < Mapping From="App.Message0"

- 2 To="Tsn10.ChannelP0"/>
- 3 < Mapping From="App.Message1"
- 4 To="Tsn10.ChannelP1"/>

Timing Information for all FBs

Function	Offset	WCET	Function	Offset	WCET
Block	[ms]	[ms]	Block	[ms]	[ms]
Pathplanning	0	1	Sub_PathP1	1.75	0.25
Pub_FFwd	1.25	0.25	Sub_Pos1	2.5	0.25
Pub_PathP	1	0.25	PID_Pos1	2.75	1
M_FFwd	3	0.5	Sub_FFwd1	3.75	0.25
M_PathP	1.25	0.5	FFwd1	4	1
Pos_Vel1	0	1	Sub_Vel1	5	0.25
Pub_Pos1	1	0.25	F_ADD1	5.25	1
Pub_Vel1	1.25	0.25	PID_Vel1	6.25	1
M_Pos1	2	0.5	Motor1	7.25	1
M_Vel1	4	0.5			

Message FBs Contracts

_CONTRACT_MESSAGE_PATHP

- A MPathPEI occurs every 10 ms with 1 ms offset.
- G Reaction(MPathPEI, MPathPEO) occurs within 1 ms.

_CONTRACT_MESSAGE_POS1

- A MPos1EI occurs every 10 ms with 1 ms offset.
- G Reaction(MPos1EI, MPos1EO) occurs within 1.75 ms.

_CONTRACT_MESSAGE_FFWD

- A MFFwdEI occurs every 10 ms with 1.25 ms offset.
- G Reaction(MFFwdEI, MFFwdEO) occurs within 2.75 ms.

_CONTRACT_MESSAGE_VEL1

- A MVel1EI occurs every 10 ms with 1.25 ms offset.
- G Reaction(MVel1EI, MVel1EO) occurs within 5 ms.

Carl von Ossietzky Universität Oldenburg

Joint Control Application Extended with Feedback Loop

Correct-by-Construction Design of Industrial Communication

Dr.-Ing. Friederike Bruns

Slide 35 25.02.2025 Carl von Ossietzky Universität Oldenburg

A Valid Mapping that Does Not Violate Contracts

Correct-by-Construction Design of Industrial Communication

Dr.-Ing. Friederike Bruns

Slide 36 25.02.2025